Preparation for the Final.

Below you can find a list of definitions, axioms (well, an axiom), theorems and (counter-)examples that you need to know for the Final. More precisely, for in-class part of the Final, you will be given several (tentatively, ten to twenty) items from this list to formulate. Note that it won't have to be word-by-word citation, but whatever you write will need to be (a) correct (as in not a false statement), (b) easily equivalent to the textbook/lectures version.

On in-class part of the Final, you will not be asked to provide any proofs.

In the list below,

- \odot marks definitions and an axiom;
- \Box marks theorems and statements;

 \triangleright marks (counter-)examples that you need to know off-hand.

Properties of \mathbb{R} .

- $\odot\,$ Bounded, bounded above, bounded below subsets of $\mathbb R.$
- \odot Upper bound, lower bound of a subset of $\mathbb R.$
- \odot Least upper bound (= exact upper bound = supremum) of a subset of \mathbb{R} .
- \odot Greatest lower bound (= exact lower bound = infimum) of a subset of \mathbb{R} .
- \odot Completeness property of \mathbb{R} (= supremum property of \mathbb{R}).
- \Box Archimedean property of \mathbb{R} .
- \Box Nested intervals property.
- \Box The density theorem.

Limits of Sequences.

- \odot Sequence of real numbers (= sequence in \mathbb{R}).
- \odot Limit of a sequence in \mathbb{R} , convergent/divergent sequence.
- \Box Uniqueness of limit of a sequence.
- \odot Bounded sequence.
- \Box Boundedness of a convergent sequence.
- \triangleright Bounded but divergent sequence.
- \Box Arithmetic properties of limits of sequences (Theorem 3.2.3).
- \triangleright Divergent sequences A, B such that A + B converges.
- \Box Order properties of limits of sequences (Theorems 3.2.4, 3.2.5).
- \triangleright Sequence (a_n) with $a_n > 0$ for all $n \in \mathbb{N}$, but $\lim(a_n) = 0$.
- \Box Squeeze theorem for sequences.
- \Box Increasing, strictly increasing, decreasing, strictly decreasing, monotone sequence.
- \Box Monotone convergence theorem.

- \odot Euler's number e.
- $\odot\,$ Subsequence of a sequence.
- $\hfill\square$ Bolzano–Weierstrass theorem.
- $\odot\,$ Cauchy sequence.
- \Box Cauchy criterion.
- $\odot~$ Sequence that tends to $+\infty,$ sequence that tends to $-\infty,$ properly divergent sequence.

Limits of Functions.

- $\odot\,$ Cluster point of a subset of $\mathbb R.$
- $\odot\,$ Limit of a function.
- \Box Uniqueness of limit of a function.
- \Box Sequential criterion for limit of a function.
- \odot Function bounded a neighborhood.
- \Box Boundedness of a function that has a limit.
- \triangleright Bounded function that does not have a limit at 0.
- \Box Arithmetic properties of limits of functions (Theorem 4.2.4).
- \triangleright Functions f, g that don't have a limit at some point $c \in \mathbb{R}$, but f + g does.
- \Box Order properties of limits of functions (Theorem 4.2.6).
- $\succ \text{ Functions } f, g \text{ such that for all } x \text{ in their domain, } f > g, \text{ but at some point } c, \lim_{x \to c} f = \lim_{x \to c} g.$
- \Box Squeeze theorem for limits of functions.
- \Box Local separation from zero (Theorem 4.2.9).
- $\odot\,$ Infinite limit of a function, limit of a function at infinity, infinite limit of a function at infinity.

Continuous Functions.

- $\odot\,$ Function, continuous at a point. Function, discontinuous at a point.
- \Box Criterion for continuity in terms of neighborhoods (Theorem 5.1.2).
- \Box Sequential criterion for continuity.
- \Box Sequential criterion for discontinuity.
- $\odot\,$ Function, continuous on a subset of $\mathbb R.$
- \triangleright Function, discontinuous everywhere (for example, Dirichlet's function).
- ▷ Function, continuous at irrational numbers and discontinuous at rational numbers (for example, Thomae's function).
- \Box Arithmetic properties of continuous functions (Theorem 5.2.1).
- \triangleright Functions f, g discontinuous at 0 such that f + g is continuous at 0.
- \Box Composition of continuous functions (at a point and on a set).
- $\Box\,$ Boundedness Theorem.

- \triangleright Bounded but discontinuous (at least at one point) function.
- \triangleright Function continuous but unbounded on an open interval.
- ⊙ Absolute (= global) maximum of a function on a set, point of absolute maximum. Absolute minimum of a function on a set, point of absolute minimum.
- $\hfill\square$ Maximum–Minimum Theorem.
- \triangleright Function f continuous on an open interval such that that f does not have maximum or minimum value.
- \Box Location of roots theorem, Bolzano's intermediate value theorem.
- \Box Preservation of intervals.
- $\odot\,$ Function, uniformly continuous on a subset of $\mathbb R.$
- \Box Uniform continuity theorem.
- ▷ Function, continuous but not uniformly continuous on an open interval.
- \odot Increasing, strictly increasing, decreasing, strictly decreasing, monotone functions.
- \Box Continuity criterion of monotone functions (Theorem 5.6.3).
- \Box Continuous inverse theorem.

Differentiation.

- $\odot\,$ Derivative of a function at a point. Function, differentiable at a point.
- \Box Continuity of a differentiable function.
- \triangleright Function, continuous but not differentiable at x = 0.
- \Box Arithmetic properties of derivative.
- \Box Chain rule.
- \Box Derivative of inverse function.
- $\hfill\square$ Interior extremum theorem.
- $\hfill\square$ Rolle's theorem.
- \Box Mean value theorem.
- \Box First derivative test for extrema (Theorem 6.2.8).
- \Box Criterion for a differentiable function to be increasing/decreasing/constant on an interval (Theorems 6.2.5, 6.2.7).
- $\odot~n{\rm th}$ Taylor polynomial of a function.
- $\Box\,$ Taylor's theorem.
- \Box *n*th derivative test for extrema (Theorem 6.4.4).
- \Box nth Taylor's polynomial at zero for $(1+x)^{\alpha}$, e^x , $\ln x$.

The Riemann Integral.

- Partition, tagged partition, Riemann sum.
- \odot Riemann integrable function, Riemann integral.

- \triangleright Not a Riemann integrable function.
- \Box Arithmetic and order properties of Riemann integral.
- $\hfill\square$ Boundedness theorem for Riemann integrable function.
- \Box Cauchy Criterion for Riemann integral.
- $\hfill\square$ Riemann integrability of a step function, of a continuous function, monotone function.
- \Box Interval additivity theorem.
- \Box The fundamental theorem (first form).
- $\odot\,$ Indefinite integral.
- \Box The fundamental theorem (second form).
- $\hfill\square$ Derivative of an indefinite integral of a continuous function.
- $\Box\,$ Substitution theorem.
- $\odot\,$ Null (or Lebesgue measure zero) set.
- \Box Lebesgue's integrability criterion.
- \Box Composition theorem.
- \Box The product theorem.
- \Box Integration by parts.

4